1 region simulations of TOA from SPM OM.

data(TOA_simulations_inputs_1region)

Format

A list object.

Examples

data(TOA_simulations_inputs_1region)
head(realised.catches)
#> [[1]]
#> # A tibble: 594 × 4
#>    cell   year    catch region
#>    <chr>  <chr>   <dbl>  <dbl>
#>  1 r10-c5 1998    353.       2
#>  2 r12-c9 1998     76.3      2
#>  3 r5-c11 1998  15987.       1
#>  4 r6-c11 1998   4629.       1
#>  5 r6-c9  1998   1727.       4
#>  6 r7-c11 1998   9744.       1
#>  7 r8-c11 1998    379.       4
#>  8 r8-c7  1998   2362.       4
#>  9 r8-c8  1998     51.7      4
#> 10 r9-c11 1998   3515.       4
#> # … with 584 more rows
#> 
#> [[2]]
#> # A tibble: 594 × 4
#>    cell   year    catch region
#>    <chr>  <chr>   <dbl>  <dbl>
#>  1 r10-c5 1998    353.       2
#>  2 r12-c9 1998     76.3      2
#>  3 r5-c11 1998  15986.       1
#>  4 r6-c11 1998   4630.       1
#>  5 r6-c9  1998   1727.       4
#>  6 r7-c11 1998   9744.       1
#>  7 r8-c11 1998    379.       4
#>  8 r8-c7  1998   2363.       4
#>  9 r8-c8  1998     51.6      4
#> 10 r9-c11 1998   3514.       4
#> # … with 584 more rows
#> 
#> [[3]]
#> # A tibble: 594 × 4
#>    cell   year    catch region
#>    <chr>  <chr>   <dbl>  <dbl>
#>  1 r10-c5 1998    353.       2
#>  2 r12-c9 1998     76.3      2
#>  3 r5-c11 1998  15987.       1
#>  4 r6-c11 1998   4629.       1
#>  5 r6-c9  1998   1727.       4
#>  6 r7-c11 1998   9744.       1
#>  7 r8-c11 1998    379.       4
#>  8 r8-c7  1998   2363.       4
#>  9 r8-c8  1998     51.6      4
#> 10 r9-c11 1998   3514.       4
#> # … with 584 more rows
#> 
#> [[4]]
#> # A tibble: 594 × 4
#>    cell   year    catch region
#>    <chr>  <chr>   <dbl>  <dbl>
#>  1 r10-c5 1998    353.       2
#>  2 r12-c9 1998     76.3      2
#>  3 r5-c11 1998  15986.       1
#>  4 r6-c11 1998   4628.       1
#>  5 r6-c9  1998   1727.       4
#>  6 r7-c11 1998   9744.       1
#>  7 r8-c11 1998    379.       4
#>  8 r8-c7  1998   2362.       4
#>  9 r8-c8  1998     51.6      4
#> 10 r9-c11 1998   3515.       4
#> # … with 584 more rows
#> 
#> [[5]]
#> # A tibble: 594 × 4
#>    cell   year    catch region
#>    <chr>  <chr>   <dbl>  <dbl>
#>  1 r10-c5 1998    353.       2
#>  2 r12-c9 1998     76.3      2
#>  3 r5-c11 1998  15987.       1
#>  4 r6-c11 1998   4628.       1
#>  5 r6-c9  1998   1727.       4
#>  6 r7-c11 1998   9744.       1
#>  7 r8-c11 1998    379.       4
#>  8 r8-c7  1998   2362.       4
#>  9 r8-c8  1998     51.6      4
#> 10 r9-c11 1998   3515.       4
#> # … with 584 more rows
#> 
#> [[6]]
#> # A tibble: 594 × 4
#>    cell   year    catch region
#>    <chr>  <chr>   <dbl>  <dbl>
#>  1 r10-c5 1998    353.       2
#>  2 r12-c9 1998     76.3      2
#>  3 r5-c11 1998  15987.       1
#>  4 r6-c11 1998   4629.       1
#>  5 r6-c9  1998   1727.       4
#>  6 r7-c11 1998   9744.       1
#>  7 r8-c11 1998    379.       4
#>  8 r8-c7  1998   2363.       4
#>  9 r8-c8  1998     51.6      4
#> 10 r9-c11 1998   3515.       4
#> # … with 584 more rows
#> 
head(realised.tags)
#> [[1]]
#> # A tibble: 464 × 33
#>    cell  age[2…¹ age[3…² age[4…³ age[5…⁴ age[6…⁵ age[7…⁶ age[8…⁷ age[9…⁸ age[1…⁹
#>    <chr>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#>  1 r2-c…       0  0       0       0.124    0.314   0.381   0.133  0.0286  0.0190
#>  2 r2-c…       0  0.0909  6.17   39.2     54.8    47.6    22.9    7.39    2.68  
#>  3 r2-c…       0  0       0.0520  0.954    2.21    1.96    1.01   0.582   0.147 
#>  4 r2-c9       0  0       0.435   0.836    1.10    1.85    1.53   0.714   0.322 
#>  5 r4-c9       0  0       0       0.139    0.587   0.788   0.370  0.0694  0.0309
#>  6 r5-c…       0  0       0.617   1.54     0.677   0.657   0.327  0.142   0.0236
#>  7 r5-c9       0  0       0.0267  1.48     3.04    2.61    1.21   0.359   0.203 
#>  8 r6-c…       0  0       0       0.0620   0.552   1.34    2.48   2.89    1.90  
#>  9 r6-c…       0  0.610   2.59    2.91     1.52    0.971   0.299  0.0341  0.0579
#> 10 r7-c…       0  0       1.41    2.69     1.62    1.13    2.02   2.15    1.69  
#> # … with 454 more rows, 23 more variables: `age[11]` <dbl>, `age[12]` <dbl>,
#> #   `age[13]` <dbl>, `age[14]` <dbl>, `age[15]` <dbl>, `age[16]` <dbl>,
#> #   `age[17]` <dbl>, `age[18]` <dbl>, `age[19]` <dbl>, `age[20]` <dbl>,
#> #   `age[21]` <dbl>, `age[22]` <dbl>, `age[23]` <dbl>, `age[24]` <dbl>,
#> #   `age[25]` <dbl>, `age[26]` <dbl>, `age[27]` <dbl>, `age[28]` <dbl>,
#> #   `age[29]` <dbl>, `age[30]` <dbl>, year <chr>, total <dbl>, region <dbl>,
#> #   and abbreviated variable names ¹​`age[2]`, ²​`age[3]`, ³​`age[4]`, …
#> 
#> [[2]]
#> # A tibble: 464 × 33
#>    cell  age[2…¹ age[3…² age[4…³ age[5…⁴ age[6…⁵ age[7…⁶ age[8…⁷ age[9…⁸ age[1…⁹
#>    <chr>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#>  1 r2-c…       0  0       0       0.124    0.314   0.381   0.133  0.0286  0.0190
#>  2 r2-c…       0  0.0909  6.17   39.2     54.8    47.6    22.9    7.39    2.68  
#>  3 r2-c…       0  0       0.0520  0.954    2.21    1.96    1.01   0.582   0.147 
#>  4 r2-c9       0  0       0.435   0.836    1.10    1.85    1.53   0.714   0.322 
#>  5 r4-c9       0  0       0       0.139    0.587   0.788   0.370  0.0694  0.0309
#>  6 r5-c…       0  0       0.617   1.54     0.677   0.657   0.327  0.142   0.0236
#>  7 r5-c9       0  0       0.0267  1.48     3.04    2.61    1.21   0.359   0.203 
#>  8 r6-c…       0  0       0       0.0620   0.552   1.34    2.48   2.89    1.90  
#>  9 r6-c…       0  0.610   2.59    2.91     1.52    0.971   0.299  0.0341  0.0579
#> 10 r7-c…       0  0       1.41    2.69     1.62    1.13    2.02   2.15    1.69  
#> # … with 454 more rows, 23 more variables: `age[11]` <dbl>, `age[12]` <dbl>,
#> #   `age[13]` <dbl>, `age[14]` <dbl>, `age[15]` <dbl>, `age[16]` <dbl>,
#> #   `age[17]` <dbl>, `age[18]` <dbl>, `age[19]` <dbl>, `age[20]` <dbl>,
#> #   `age[21]` <dbl>, `age[22]` <dbl>, `age[23]` <dbl>, `age[24]` <dbl>,
#> #   `age[25]` <dbl>, `age[26]` <dbl>, `age[27]` <dbl>, `age[28]` <dbl>,
#> #   `age[29]` <dbl>, `age[30]` <dbl>, year <chr>, total <dbl>, region <dbl>,
#> #   and abbreviated variable names ¹​`age[2]`, ²​`age[3]`, ³​`age[4]`, …
#> 
#> [[3]]
#> # A tibble: 464 × 33
#>    cell  age[2…¹ age[3…² age[4…³ age[5…⁴ age[6…⁵ age[7…⁶ age[8…⁷ age[9…⁸ age[1…⁹
#>    <chr>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#>  1 r2-c…       0  0       0       0.124    0.314   0.381   0.133  0.0286  0.0190
#>  2 r2-c…       0  0.0909  6.17   39.2     54.8    47.6    22.9    7.39    2.68  
#>  3 r2-c…       0  0       0.0520  0.954    2.21    1.96    1.01   0.582   0.147 
#>  4 r2-c9       0  0       0.435   0.836    1.10    1.85    1.53   0.714   0.322 
#>  5 r4-c9       0  0       0       0.139    0.587   0.788   0.370  0.0694  0.0309
#>  6 r5-c…       0  0       0.617   1.54     0.677   0.657   0.327  0.142   0.0236
#>  7 r5-c9       0  0       0.0267  1.48     3.04    2.61    1.21   0.359   0.203 
#>  8 r6-c…       0  0       0       0.0620   0.552   1.34    2.48   2.89    1.90  
#>  9 r6-c…       0  0.610   2.59    2.91     1.52    0.971   0.299  0.0341  0.0579
#> 10 r7-c…       0  0       1.41    2.69     1.62    1.13    2.02   2.15    1.69  
#> # … with 454 more rows, 23 more variables: `age[11]` <dbl>, `age[12]` <dbl>,
#> #   `age[13]` <dbl>, `age[14]` <dbl>, `age[15]` <dbl>, `age[16]` <dbl>,
#> #   `age[17]` <dbl>, `age[18]` <dbl>, `age[19]` <dbl>, `age[20]` <dbl>,
#> #   `age[21]` <dbl>, `age[22]` <dbl>, `age[23]` <dbl>, `age[24]` <dbl>,
#> #   `age[25]` <dbl>, `age[26]` <dbl>, `age[27]` <dbl>, `age[28]` <dbl>,
#> #   `age[29]` <dbl>, `age[30]` <dbl>, year <chr>, total <dbl>, region <dbl>,
#> #   and abbreviated variable names ¹​`age[2]`, ²​`age[3]`, ³​`age[4]`, …
#> 
#> [[4]]
#> # A tibble: 464 × 33
#>    cell  age[2…¹ age[3…² age[4…³ age[5…⁴ age[6…⁵ age[7…⁶ age[8…⁷ age[9…⁸ age[1…⁹
#>    <chr>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#>  1 r2-c…       0  0       0       0.124    0.314   0.381   0.133  0.0286  0.0190
#>  2 r2-c…       0  0.0909  6.17   39.2     54.8    47.6    22.9    7.39    2.68  
#>  3 r2-c…       0  0       0.0520  0.954    2.21    1.96    1.01   0.582   0.147 
#>  4 r2-c9       0  0       0.435   0.836    1.10    1.85    1.53   0.714   0.322 
#>  5 r4-c9       0  0       0       0.139    0.587   0.788   0.370  0.0694  0.0309
#>  6 r5-c…       0  0       0.617   1.54     0.677   0.657   0.327  0.142   0.0236
#>  7 r5-c9       0  0       0.0267  1.48     3.04    2.61    1.21   0.359   0.203 
#>  8 r6-c…       0  0       0       0.0620   0.552   1.34    2.48   2.89    1.90  
#>  9 r6-c…       0  0.610   2.59    2.91     1.52    0.971   0.299  0.0341  0.0579
#> 10 r7-c…       0  0       1.41    2.69     1.62    1.13    2.02   2.15    1.69  
#> # … with 454 more rows, 23 more variables: `age[11]` <dbl>, `age[12]` <dbl>,
#> #   `age[13]` <dbl>, `age[14]` <dbl>, `age[15]` <dbl>, `age[16]` <dbl>,
#> #   `age[17]` <dbl>, `age[18]` <dbl>, `age[19]` <dbl>, `age[20]` <dbl>,
#> #   `age[21]` <dbl>, `age[22]` <dbl>, `age[23]` <dbl>, `age[24]` <dbl>,
#> #   `age[25]` <dbl>, `age[26]` <dbl>, `age[27]` <dbl>, `age[28]` <dbl>,
#> #   `age[29]` <dbl>, `age[30]` <dbl>, year <chr>, total <dbl>, region <dbl>,
#> #   and abbreviated variable names ¹​`age[2]`, ²​`age[3]`, ³​`age[4]`, …
#> 
#> [[5]]
#> # A tibble: 464 × 33
#>    cell  age[2…¹ age[3…² age[4…³ age[5…⁴ age[6…⁵ age[7…⁶ age[8…⁷ age[9…⁸ age[1…⁹
#>    <chr>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#>  1 r2-c…       0  0       0       0.124    0.314   0.381   0.133  0.0286  0.0190
#>  2 r2-c…       0  0.0909  6.17   39.2     54.8    47.6    22.9    7.39    2.68  
#>  3 r2-c…       0  0       0.0520  0.954    2.21    1.96    1.01   0.582   0.147 
#>  4 r2-c9       0  0       0.435   0.836    1.10    1.85    1.53   0.714   0.322 
#>  5 r4-c9       0  0       0       0.139    0.587   0.788   0.370  0.0694  0.0309
#>  6 r5-c…       0  0       0.617   1.54     0.677   0.657   0.327  0.142   0.0236
#>  7 r5-c9       0  0       0.0267  1.48     3.04    2.61    1.21   0.359   0.203 
#>  8 r6-c…       0  0       0       0.0620   0.552   1.34    2.48   2.89    1.90  
#>  9 r6-c…       0  0.610   2.59    2.91     1.52    0.971   0.299  0.0341  0.0579
#> 10 r7-c…       0  0       1.41    2.69     1.62    1.13    2.02   2.15    1.69  
#> # … with 454 more rows, 23 more variables: `age[11]` <dbl>, `age[12]` <dbl>,
#> #   `age[13]` <dbl>, `age[14]` <dbl>, `age[15]` <dbl>, `age[16]` <dbl>,
#> #   `age[17]` <dbl>, `age[18]` <dbl>, `age[19]` <dbl>, `age[20]` <dbl>,
#> #   `age[21]` <dbl>, `age[22]` <dbl>, `age[23]` <dbl>, `age[24]` <dbl>,
#> #   `age[25]` <dbl>, `age[26]` <dbl>, `age[27]` <dbl>, `age[28]` <dbl>,
#> #   `age[29]` <dbl>, `age[30]` <dbl>, year <chr>, total <dbl>, region <dbl>,
#> #   and abbreviated variable names ¹​`age[2]`, ²​`age[3]`, ³​`age[4]`, …
#> 
#> [[6]]
#> # A tibble: 464 × 33
#>    cell  age[2…¹ age[3…² age[4…³ age[5…⁴ age[6…⁵ age[7…⁶ age[8…⁷ age[9…⁸ age[1…⁹
#>    <chr>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#>  1 r2-c…       0  0       0       0.124    0.314   0.381   0.133  0.0286  0.0190
#>  2 r2-c…       0  0.0909  6.17   39.2     54.8    47.6    22.9    7.39    2.68  
#>  3 r2-c…       0  0       0.0520  0.954    2.21    1.96    1.01   0.582   0.147 
#>  4 r2-c9       0  0       0.435   0.836    1.10    1.85    1.53   0.714   0.322 
#>  5 r4-c9       0  0       0       0.139    0.587   0.788   0.370  0.0694  0.0309
#>  6 r5-c…       0  0       0.617   1.54     0.677   0.657   0.327  0.142   0.0236
#>  7 r5-c9       0  0       0.0267  1.48     3.04    2.61    1.21   0.359   0.203 
#>  8 r6-c…       0  0       0       0.0620   0.552   1.34    2.48   2.89    1.90  
#>  9 r6-c…       0  0.610   2.59    2.91     1.52    0.971   0.299  0.0341  0.0579
#> 10 r7-c…       0  0       1.41    2.69     1.62    1.13    2.02   2.15    1.69  
#> # … with 454 more rows, 23 more variables: `age[11]` <dbl>, `age[12]` <dbl>,
#> #   `age[13]` <dbl>, `age[14]` <dbl>, `age[15]` <dbl>, `age[16]` <dbl>,
#> #   `age[17]` <dbl>, `age[18]` <dbl>, `age[19]` <dbl>, `age[20]` <dbl>,
#> #   `age[21]` <dbl>, `age[22]` <dbl>, `age[23]` <dbl>, `age[24]` <dbl>,
#> #   `age[25]` <dbl>, `age[26]` <dbl>, `age[27]` <dbl>, `age[28]` <dbl>,
#> #   `age[29]` <dbl>, `age[30]` <dbl>, year <chr>, total <dbl>, region <dbl>,
#> #   and abbreviated variable names ¹​`age[2]`, ²​`age[3]`, ³​`age[4]`, …
#>